- #36
- 42,016
- 10,161
Fwiw, it can be written in vector notation as ##\phi=\int \vec\nabla.\vec{dr}-\int\int (\vec \nabla\times\vec\nabla)\phi.(\vec{dr}\times\vec{dr})+\int\int\int \wedge^3\vec \nabla\phi.\wedge^3\vec{dr}##, where ##\wedge^3\vec v## stands for the triple scalar product ##\vec v.\vec v\times\vec v## (by analogy with the exterior product).TSny said:Yes, you are right. I was making the stupid mistake of thinking that taking the partial derivative of a function with respect to x, say, followed by integrating with respect to x would give back the function (up to a constant of integration). Certainly not!