- #1
cianfa72
- 2,452
- 255
- TL;DR Summary
- About the calculation of Lie derivative - follow up
Hi, a doubt related to the calculation done in this old thread.
$$\left(L_{\mathbf{X}} \dfrac{\partial}{\partial x^i} \right)^j = -\dfrac{\partial X^j}{\partial x^i}$$
$$L_{\mathbf{X}} {T^a}_b = {(L_{\mathbf{X}} \mathbf{T})^a}_b + {T^{i}}_b \langle L_{\mathbf{X}} \mathbf{e}^a, \mathbf{e}_i \rangle + {T^{a}}_j \langle \mathbf{e}^j, L_{\mathbf{X}} \mathbf{e}_b \rangle$$
The second term on RHS should actually be ##{T^{i}}_b \left(L_{\mathbf{X}} \dfrac{\partial x_i}{\partial x^a} \right)^j= -{T^{i}}_b\dfrac{\partial X^i}{\partial x^a}##
I'am confused about it.
$$\left(L_{\mathbf{X}} \dfrac{\partial}{\partial x^i} \right)^j = -\dfrac{\partial X^j}{\partial x^i}$$
$$L_{\mathbf{X}} {T^a}_b = {(L_{\mathbf{X}} \mathbf{T})^a}_b + {T^{i}}_b \langle L_{\mathbf{X}} \mathbf{e}^a, \mathbf{e}_i \rangle + {T^{a}}_j \langle \mathbf{e}^j, L_{\mathbf{X}} \mathbf{e}_b \rangle$$
The second term on RHS should actually be ##{T^{i}}_b \left(L_{\mathbf{X}} \dfrac{\partial x_i}{\partial x^a} \right)^j= -{T^{i}}_b\dfrac{\partial X^i}{\partial x^a}##
I'am confused about it.
Last edited: