- #1
Fantini
Gold Member
MHB
- 268
- 0
The book calculates the commutator $[H,x_i]$ as
$$[H,x_i] = \left[ \sum_j \frac{p_j^2}{2m}, x_i \right] = \frac{2}{2m} \sum_j p_j \frac{\hbar}{i} \delta_{ij} = - \frac{i \hbar p_i}{m},$$
where the hamiltonian operator $H$ is
$$H = \sum_j \frac{{\mathbf p}_j^2}{2m_j} + V({\mathbf x}).$$
The book claims to use the property of commutators that
$$[AB,C] = A[B,C] + [A,C]B,$$
but I don't see how that applies.
$$[H,x_i] = \left[ \sum_j \frac{p_j^2}{2m}, x_i \right] = \frac{2}{2m} \sum_j p_j \frac{\hbar}{i} \delta_{ij} = - \frac{i \hbar p_i}{m},$$
where the hamiltonian operator $H$ is
$$H = \sum_j \frac{{\mathbf p}_j^2}{2m_j} + V({\mathbf x}).$$
The book claims to use the property of commutators that
$$[AB,C] = A[B,C] + [A,C]B,$$
but I don't see how that applies.