- #1
Hamiltonian
- 296
- 193
- Homework Statement
- Calculate the magnitude of the field due to a dipole at a point P which is at a distance ##r## from the midpoint of the two charges and makes an angle ##\theta## with the dipole moment Vector ##P##. the distances between the two opposite charges is ##a## and ##(a<<r)##.
- Relevant Equations
- -
I know how to derive field using ##E = -\nabla V## in polar coordinates and doing so gave me $$E = (kP/r^3)(1 + 3cos^3\theta)^{1/2}$$
now I am trying to derive ##E## at point P using the fields produced by +ve and -ve charge respectively and taking components of each along the radial direction along ##r## and perpendicular to ##r##. I assumed angles ##\alpha## and ##\beta## with the perpendicular to the radial direction in hopes they get eliminated when finding ##E_{net}##.
$$E_+ = \frac {kq}{r^2} (1+ (2a/r) cos\theta)$$
$$E_- = \frac {kq}{r^2} (1- (2a/r) cos\theta)$$
here ##E_+## and ##E_-## are fields due to the -ve and +ve charges at point P.
$$E_r = E_+ sin\beta - E_- simn\alpha$$
$$E_{r'} = E_+ cos\beta + E_- cos\alpha$$
here ##E_r## is the componetnt of ##E_{net}## at P along ##r## and ##E_{r'}## is the component of ##E_{net}## perpendicular to ##r##.
$$| E_{net}| = \sqrt{(E_r)^2 + (E_{r'})^2}$$
I am not able to eliminate ##\alpha## and ##\beta## from the final expression for ##E_{net}##.
now I am trying to derive ##E## at point P using the fields produced by +ve and -ve charge respectively and taking components of each along the radial direction along ##r## and perpendicular to ##r##. I assumed angles ##\alpha## and ##\beta## with the perpendicular to the radial direction in hopes they get eliminated when finding ##E_{net}##.
$$E_+ = \frac {kq}{r^2} (1+ (2a/r) cos\theta)$$
$$E_- = \frac {kq}{r^2} (1- (2a/r) cos\theta)$$
here ##E_+## and ##E_-## are fields due to the -ve and +ve charges at point P.
$$E_r = E_+ sin\beta - E_- simn\alpha$$
$$E_{r'} = E_+ cos\beta + E_- cos\alpha$$
here ##E_r## is the componetnt of ##E_{net}## at P along ##r## and ##E_{r'}## is the component of ##E_{net}## perpendicular to ##r##.
$$| E_{net}| = \sqrt{(E_r)^2 + (E_{r'})^2}$$
I am not able to eliminate ##\alpha## and ##\beta## from the final expression for ##E_{net}##.
Last edited: