- #1
NoobieDoobie
- 4
- 3
- Homework Statement
- A problem from Rindller's relativity book (Check below)
- Relevant Equations
- Lorentz Transformations
I am trying to work through rindler's relativity book. However, I got stuck at what I think should be a simple approximation.
I calculated the angles ##\theta## and ##\theta''## using the formula for velocity transformation. If I simply expand ##\gamma(v)## and ##\gamma(v')## using taylor series and calculate ##tan(\theta'')-tan(\theta) = \frac{v'}{2vc^2}(v^2+v'^2)##. First term of this formula is precisely the answer. However, I would have to calculate ## tan(\theta''-\theta)##, invert the equation and approximate again. This doesn't seem to be what rindler wants us to do though. There must be a simpler way to derive the formula. What am I doing wrong?
Edit : If I assume ##v' << v##, I do get the same formula as rindler. I checked from Goldstein's book and he derives the same formula under the assumption ##v'<<v##. I am wondering if Rindler might just have forgotten to add it in the problem statement?
I calculated the angles ##\theta## and ##\theta''## using the formula for velocity transformation. If I simply expand ##\gamma(v)## and ##\gamma(v')## using taylor series and calculate ##tan(\theta'')-tan(\theta) = \frac{v'}{2vc^2}(v^2+v'^2)##. First term of this formula is precisely the answer. However, I would have to calculate ## tan(\theta''-\theta)##, invert the equation and approximate again. This doesn't seem to be what rindler wants us to do though. There must be a simpler way to derive the formula. What am I doing wrong?
Edit : If I assume ##v' << v##, I do get the same formula as rindler. I checked from Goldstein's book and he derives the same formula under the assumption ##v'<<v##. I am wondering if Rindler might just have forgotten to add it in the problem statement?
Last edited: