- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave) The following Runge-Kutta method is given.
$$ \begin{array}{c|ccccc}
\tau_1 =0 & a_{11}=0 & a_{12} = 0\\
\tau_2 =\frac{5}{2} & a_{21} = \frac{5}{2} & a_{22} = 0\\
\hline
& b_1 = \frac{4}{5} & b_2 = \frac{1}{5} & \
\end{array} $$
I have to determine the order of accuracy and I found that it is $2$.
Then if the method is applied at the system $\\y_1'=-80y_1+20y_2 \\
y_2'=20y_1-80y_2$ what $h$ should we take so that the calculations get done with absolute stability?
How can we find such an $ h$?
I found that the region of absolute stability is $S=\{ z \in \mathbb{C}: |\frac{z^2}{2}+z+1|<1\}$. Does this help?
$$ \begin{array}{c|ccccc}
\tau_1 =0 & a_{11}=0 & a_{12} = 0\\
\tau_2 =\frac{5}{2} & a_{21} = \frac{5}{2} & a_{22} = 0\\
\hline
& b_1 = \frac{4}{5} & b_2 = \frac{1}{5} & \
\end{array} $$
I have to determine the order of accuracy and I found that it is $2$.
Then if the method is applied at the system $\\y_1'=-80y_1+20y_2 \\
y_2'=20y_1-80y_2$ what $h$ should we take so that the calculations get done with absolute stability?
How can we find such an $ h$?
I found that the region of absolute stability is $S=\{ z \in \mathbb{C}: |\frac{z^2}{2}+z+1|<1\}$. Does this help?