- #1
putongren
- 125
- 1
Hello All,
I am trying to understand the solution of a problem that uses calculus and the conservation of momentum principle.The problem is here: http://www.physics.harvard.edu/academics/undergrad/probweek/prob79.pdf and the answer is here: http://www.physics.harvard.edu/academics/undergrad/probweek/sol79.pdf
I have several questions concerning the solution, and I will ask one question at a time. My understanding of integration is weak. In the solution, we arrive at:
[tex]\int_{M}^{m} \frac{dm}{m} = \int_{0}^{v} \frac{dv}{u-v}[/tex]. Why is it that we integrate between m and M and v and 0? What does integrating those terms physically mean? I think there is something missing in my understanding.
I am trying to understand the solution of a problem that uses calculus and the conservation of momentum principle.The problem is here: http://www.physics.harvard.edu/academics/undergrad/probweek/prob79.pdf and the answer is here: http://www.physics.harvard.edu/academics/undergrad/probweek/sol79.pdf
I have several questions concerning the solution, and I will ask one question at a time. My understanding of integration is weak. In the solution, we arrive at:
[tex]\int_{M}^{m} \frac{dm}{m} = \int_{0}^{v} \frac{dv}{u-v}[/tex]. Why is it that we integrate between m and M and v and 0? What does integrating those terms physically mean? I think there is something missing in my understanding.
Last edited by a moderator: