I Calculus of Variations on Kullback-Liebler Divergence

AI Thread Summary
The discussion revolves around minimizing Kullback-Leibler (KL) divergence using variational calculus, specifically by setting the distribution q equal to p. The original poster expresses difficulty in understanding the calculus of variations, particularly the relevance of Euler-Lagrange equations and functional derivatives. Key advice includes considering the constraints on q as a probability distribution, such as ensuring it integrates to one and remains nonnegative. Additional resources are suggested for incorporating these constraints into the variational approach. Overall, the focus is on finding an optimal q to minimize KL divergence given a fixed p.
Master1022
Messages
590
Reaction score
116
TL;DR Summary
How to use calculus of variations on KL-divergence
Hi,

This isn't a homework question, but a side task given in a machine learning class I am taking.

Question: Using variational calculus, prove that one can minimize the KL-divergence by choosing ##q## to be equal to ##p##, given a fixed ##p##.

Attempt:

Unfortunately, I have never seen calculus of variations (it was suggested that we teach ourselves). I have been trying to watch some videos online, but I mainly just see references to Euler-Lagrange equations which I don't think are of much relevance here (please correct me if I am wrong) and not much explanation of the functional derivatives.

Nonetheless, I think this shouldn't be too hard, but am struggling to understand how to use the tools.

If we start with the definition of the KL-divergence we get:
\text{KL}[p||q] = \int p(x) log(\frac{p(x)}{q(x)}) dx = I

Would it be possible for anyone to help me get started on the path? I am not sure how to proceed really after I write down ## \frac{\delta I}{\delta q} ##?

Thanks in advance
 
Mathematics news on Phys.org
Euler Lagrange is what you want, but you also have to worry about the conditions that you have on q that come from it being a probability distribution, namely that the integral is 1 and it's always nonnegative. I think the integral constraint is the important part

http://liberzon.csl.illinois.edu/teaching/cvoc/node38.html

Has some notes on how to add constraints to the euler Lagrange equations.
 
Maybe you should start with fixed p, and then try to get optimal q to maximize or minimize KL.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top