MHB Cambree's question at Yahoo Answers (Convergence of a sequence)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Sequence
AI Thread Summary
The sequence in question is determined to be convergent. The term 29/19^n is bounded below and decreasing, while 18arctan(n^5) is bounded above and increasing, both confirming convergence. The limit of the sequence as n approaches infinity is calculated to be 9π. Therefore, the final conclusion is that the sequence converges to 9π. Further inquiries can be directed to the specified math help forum.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Determine whether the sequence is divergent or convergent. If it is convergent, evaluate its limit. If it diverges to infinity, state your answer as "INF" (without the quotation marks). If it diverges to negative infinity, state your answer as "MINF". If it diverges without being infinity or negative infinity, state your answer as "DIV".

limit as n approaches infinity -> (29/19^(n))+ 18arctan(n^5)

Here is a link to the question:

Determine whether the sequence is divergent or convergent? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Cambree,

Easily proved, $29/19^n$ is bounded below (by $0$) and decreasing, so it is convergent. The sequence $18\arctan n^5$ is bounded above (by $18\pi/2$) and increassing, so it is convergent. As a consequence, the given sequence is convergent. Besides, $$\lim_{n\to +\infty}\left(\frac{29}{19^n}+ 18\arctan n^5\right)=\frac{19}{+\infty}+18\arctan (+\infty)=0+18\frac{\pi}{2}=\boxed{9\pi} $$ If you have further questions, you can post them in the http://www.mathhelpboards.com/f21/ section.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top