- #1
Ackbach
Gold Member
MHB
- 4,155
- 92
Here is this week's POTW:
-----
For a positive real number $\alpha$ define
$$S(\alpha)=\{\lfloor n\alpha\rfloor: n=1,2,3,\dots\}.$$
Prove that $\{1,2,3,\dots\}$ cannot be expressed as the disjoint union of three sets $S(\alpha), S(\beta),$ and $S(\gamma)$. (As usual, $\lfloor x\rfloor$ is the greatest integer $\le x$.)
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
For a positive real number $\alpha$ define
$$S(\alpha)=\{\lfloor n\alpha\rfloor: n=1,2,3,\dots\}.$$
Prove that $\{1,2,3,\dots\}$ cannot be expressed as the disjoint union of three sets $S(\alpha), S(\beta),$ and $S(\gamma)$. (As usual, $\lfloor x\rfloor$ is the greatest integer $\le x$.)
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!