- #1
simo1
- 29
- 0
if x'=f(x) and x is a solution of that DE on an open interval (alpha,beta)
where f is locally lip.
how can i show that for every possibe extension of x to an interval (apha, tau) the range of the solution is contained in closed and bounded subset of D, then x can be extended to (alpha,infinity
where f is locally lip.
how can i show that for every possibe extension of x to an interval (apha, tau) the range of the solution is contained in closed and bounded subset of D, then x can be extended to (alpha,infinity