- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
Let $\mathcal F$ be a finite collection of open discs in $\mathbb R^2$ whose union contains a set $E\subseteq \mathbb R^2$. Show that there is a pairwise disjoint subcollection $D_1,\ldots, D_n$ in $\mathcal F$ such that \[E\subseteq \cup_{j=1}^n 3D_j.\]
Here, if $D$ is the disc of radius $r$ and center $P$, then $3D$ is the disc of radius $3r$ and center $P$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $\mathcal F$ be a finite collection of open discs in $\mathbb R^2$ whose union contains a set $E\subseteq \mathbb R^2$. Show that there is a pairwise disjoint subcollection $D_1,\ldots, D_n$ in $\mathcal F$ such that \[E\subseteq \cup_{j=1}^n 3D_j.\]
Here, if $D$ is the disc of radius $r$ and center $P$, then $3D$ is the disc of radius $3r$ and center $P$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!