I Can a Gaussian distribution be represented as a sum of Dirac Deltas?

AI Thread Summary
A Dirac Delta function can be approximated as a limiting case of a Gaussian distribution as the width approaches zero. Conversely, it is proposed that a Gaussian spectrum can be represented as a weighted sum of Dirac Deltas, where the weights determine the distribution. While any function can be expressed as an integral of Dirac delta functions, a discrete sum representation is not feasible for most functions. However, an approximation using small increments can be made, allowing for a representation that works in an integration sense. This discussion highlights the relationship between Gaussian distributions and Dirac delta functions in mathematical modeling.
tworitdash
Messages
104
Reaction score
25
We know that Dirac Delta is not a function. However, I just talk about the numerical version of it that we use every day. We can simply represent the Dirac delta function as a limiting case of Gaussian distribution when the width of the distribution ##\sigma->0##.

$$
\delta(x - \mu) = lim_{\sigma -> 0} \frac{1}{\sqrt{2\pi \sigma^2}} e^{\frac{-(x - \mu)^2}{2\sigma^2}}
$$

Is it possible to also say the reverse with a weighted sum of Dirac Deltas to construct a Gaussian spectrum?

$$
\frac{1}{\sqrt{2\pi \sigma^2}} e^{\frac{-(x - mu)^2}{2\sigma^2}} = \sum_{i} w_i \delta(x - i)
$$

Where, somehow the weights ##w_i## constitute how it is distributed (##\sigma##). If yes, how do we decide these weights?
 
Mathematics news on Phys.org
Any function can be represented as a sum of Dirac delta functions:

Let ##f(x)## be an arbitrary function of ##x##. Then you can represent it as:

##\int f(y) \delta(x-y) dy##

So that's a weighted sum (well, integral) of delta functions.
 
stevendaryl said:
Any function can be represented as a sum of Dirac delta functions:

Let ##f(x)## be an arbitrary function of ##x##. Then you can represent it as:

##\int f(y) \delta(x-y) dy##

So that's a weighted sum (well, integral) of delta functions.

If you really want a discrete sum, instead of an integral, then it can't be done for most functions. But I guess for some purposes, you can approximate a function by delta functions: Pick a small positive x increment ##\Delta x## and define ##\tilde{f}(x, \Delta x)## by:

##\tilde{f}(x, \Delta x) = \sum_j f(j \Delta x) \delta(x- j\Delta x) \Delta x##

where ##\Delta x## is some small real number. This approximation works in an integration sense: For any other smooth function ##g(x)##, we have:

##lim_{\Delta x \Rightarrow 0} \int \tilde{f}(x, \Delta x) g(x) dx = \int f(x) g(x) dx##
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top