- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
Let $G$ be a group with identity $e$ and $\phi:G\rightarrow G$ a function such that
\[\phi(g_1)\phi(g_2)\phi(g_3)=\phi(h_1)\phi(h_2)\phi(h_3)\]
whenever $g_1g_2g_3=e=h_1h_2h_3$. Prove that there exists an element $a\in G$ such that $\psi(x)=a\phi(x)$ is a homomorphism (i.e. $\psi(xy)=\psi(x)\psi(y)$ for all $x,y\in G$).
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $G$ be a group with identity $e$ and $\phi:G\rightarrow G$ a function such that
\[\phi(g_1)\phi(g_2)\phi(g_3)=\phi(h_1)\phi(h_2)\phi(h_3)\]
whenever $g_1g_2g_3=e=h_1h_2h_3$. Prove that there exists an element $a\in G$ such that $\psi(x)=a\phi(x)$ is a homomorphism (i.e. $\psi(xy)=\psi(x)\psi(y)$ for all $x,y\in G$).
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!