- #1
some bloke
- 283
- 99
This is a purely experimental idea which I would like some help understanding A) whether it can work and B) how best to understand the mechanics of the act.
Firstly, my limited understanding of gyroscopes is that a stable gyroscope will (effectively) attempt to remain at the same angle if it is subjected to a force - as evidenced when people balance gyros with their centers of mass well off the balance point.
The following idea works in my mind, and I'm curious as to whether it does in practice:
We start with a lever, which is lying horizontally with a hinge fixing it at the end (preventing twisting actions, only allowing up & down movement). At the freely moving end, there is a motor which rotates a bed in the same axis as the hinge - so if the lever is lifted, the motor can be used to keep the bed level, or rotate it further, as I expect would be necessary. it can rotate freely in the same axis as the fulcrum, and is powered. Then a gyroscope is mounted (with a vertical axis of rotation) on the bed and spun up to a high speed, with a motor to keep it going.
With this set up, the motor is then activated to try and tilt the gyroscope downwards. The gyro resists this motion, causing the lever to lift up (and a corresponding drop in speed from the gyro, as energy is conserved).I first thought about this years ago after mucking around with a power ball gyro arm strengthener, and feeling the pull on my limbs as I attempted to twist the gyro around. I never thought it would have any practical application, but now I have an idea and I would like to know if there's any scope for me experimenting with this, or if my thoughts are all way off!
Some research has given me examples of precession, where a force is generated to make the gyroscope rotate around the vertical axis instead of falling down, but everything I can find relies on the gyroscope being free and untethered, and I can find very little to do with moving things using gyroscopes.
To explain further the thought train that led to this idea:
• Gyroscopes exert a force opposing a change to their axis of rotation
• If you put a gyroscope on a motorized rotatable frame inside a ball, and then had the ball try to rotate the gyroscope, the ball would roll instead as the gyroscope remained level. (is this true?)
• If you then put that ball on a slope, it could roll up the slope, so gaining height is possible (and would probably slow the gyroscope down to balance the equation)
• If the ball wasn't round, it would still try to rotate, so going to the extremes, I am thinking a straight lever lying flat.
Any information, links or videos you can offer me to better understand this would be brilliant. The short of the question isn't about exact numbers, it's just whether it would work at all! If the answer is yes, the next bit is what happens if the lever isn't attached with a hinge - would it stand up on end, or just roll over!
As for the "why use a gyroscope" questions and "what are you trying to achieve", I'm keeping my project itself close to my chest (the internet is, after all, freely accessed) so please help me to understand the principles of this experiment and whether it's worth conducting!
Thanks!
Firstly, my limited understanding of gyroscopes is that a stable gyroscope will (effectively) attempt to remain at the same angle if it is subjected to a force - as evidenced when people balance gyros with their centers of mass well off the balance point.
The following idea works in my mind, and I'm curious as to whether it does in practice:
We start with a lever, which is lying horizontally with a hinge fixing it at the end (preventing twisting actions, only allowing up & down movement). At the freely moving end, there is a motor which rotates a bed in the same axis as the hinge - so if the lever is lifted, the motor can be used to keep the bed level, or rotate it further, as I expect would be necessary. it can rotate freely in the same axis as the fulcrum, and is powered. Then a gyroscope is mounted (with a vertical axis of rotation) on the bed and spun up to a high speed, with a motor to keep it going.
With this set up, the motor is then activated to try and tilt the gyroscope downwards. The gyro resists this motion, causing the lever to lift up (and a corresponding drop in speed from the gyro, as energy is conserved).I first thought about this years ago after mucking around with a power ball gyro arm strengthener, and feeling the pull on my limbs as I attempted to twist the gyro around. I never thought it would have any practical application, but now I have an idea and I would like to know if there's any scope for me experimenting with this, or if my thoughts are all way off!
Some research has given me examples of precession, where a force is generated to make the gyroscope rotate around the vertical axis instead of falling down, but everything I can find relies on the gyroscope being free and untethered, and I can find very little to do with moving things using gyroscopes.
To explain further the thought train that led to this idea:
• Gyroscopes exert a force opposing a change to their axis of rotation
• If you put a gyroscope on a motorized rotatable frame inside a ball, and then had the ball try to rotate the gyroscope, the ball would roll instead as the gyroscope remained level. (is this true?)
• If you then put that ball on a slope, it could roll up the slope, so gaining height is possible (and would probably slow the gyroscope down to balance the equation)
• If the ball wasn't round, it would still try to rotate, so going to the extremes, I am thinking a straight lever lying flat.
Any information, links or videos you can offer me to better understand this would be brilliant. The short of the question isn't about exact numbers, it's just whether it would work at all! If the answer is yes, the next bit is what happens if the lever isn't attached with a hinge - would it stand up on end, or just roll over!
As for the "why use a gyroscope" questions and "what are you trying to achieve", I'm keeping my project itself close to my chest (the internet is, after all, freely accessed) so please help me to understand the principles of this experiment and whether it's worth conducting!
Thanks!