- #1
Devin-M
- 1,055
- 764
I was reading about heat pumps and it made me wonder… would the following process be physically possible…?
I attach the hot side of the heat pump to the hot side of the stirling engine. 400% COP (coefficient of performance) means 1 kilowatt hour of electricity consumed by the heat pump delivers 4 kilowatt hours of heat to the stirling engine (heat mostly transferred from the environment to the stirling engine, rather than the electricity itself being directly converted to heat).
…the stirling engine operates at 32% efficiency… for every 4 kilowatt hours of heat supplied, 1.28 kilowatt hours of mechanical energy is generated. the mechanical output of the stirling engine is attached to a generator…
the generator operates at 95% efficiency… for every 1.28 kilowatt hours of mechanical energy supplied, 1.21 kilowatt hours of electrical power is produced. the electrical power is used to charge a battery…
… the battery charges at 95% efficiency… for every 1.21 kilowatt hours supplied, 1.15 kilowatt hours of energy is stored. 1.15 kilowatt hours of stored electricity has been produced from 1 kilowatt hour of electricity input. the extra energy obtained came from the heat energy of the surroundings which have now decreased in temperature as a result of the process.
I attach the hot side of the heat pump to the hot side of the stirling engine. 400% COP (coefficient of performance) means 1 kilowatt hour of electricity consumed by the heat pump delivers 4 kilowatt hours of heat to the stirling engine (heat mostly transferred from the environment to the stirling engine, rather than the electricity itself being directly converted to heat).
…the stirling engine operates at 32% efficiency… for every 4 kilowatt hours of heat supplied, 1.28 kilowatt hours of mechanical energy is generated. the mechanical output of the stirling engine is attached to a generator…