- #1
skoker
- 10
- 0
i have a simple proof is this correct?
prove that if \(A^2=A\), then either A=I or A is singular.
let A be a non singular matrix. then \(A^2=A, \quad A^{-1}A^2=A^{-1}A, \quad IA=I, \quad A=I\) therefore \(A^2=A.\)
prove that if \(A^2=A\), then either A=I or A is singular.
let A be a non singular matrix. then \(A^2=A, \quad A^{-1}A^2=A^{-1}A, \quad IA=I, \quad A=I\) therefore \(A^2=A.\)