- #1
jostpuur
- 2,116
- 19
Let [tex]X[/tex] be a [tex]C^*[/tex]-algebra. I know that if [tex]x\in X[/tex] is self-adjoint, then its spectrum is real, [tex]\sigma(x)\subset\mathbb{R}[/tex]. I haven't seen a claim about the converse, but it seems difficult to come up with a counter example for it. My question is, that is it possible, that some [tex]x\in X[/tex] has a real spectrum, but still [tex]x^*\neq x[/tex]?