- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here is this week's POTW:
-----
Let $p$ be a prime, $G$ a transitive subgroup of the symmetric group $S_p$, and $A$ a nontrivial normal subgroup of $G$. Prove that $A$ is a transitive subgroup of $S_p$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $p$ be a prime, $G$ a transitive subgroup of the symmetric group $S_p$, and $A$ a nontrivial normal subgroup of $G$. Prove that $A$ is a transitive subgroup of $S_p$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!