- #1
goulio
- 15
- 0
I need to find the eigenvalues and eigenvectors of a matrix of the form
[tex]
\left ( \begin{array}{cc}
X_1 & X_2 \\
X_2 & X_1
\end{array} \right )
[/tex]
where the [itex]X_i[/itex]'s are themselves [itex]M \times M[/itex] matrices of the form
[tex]
X_i = x_i \left ( \begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array} \right )
[/tex]
Is there any theroem that could help? Something like if you find the eigenvalues of the [itex]X_i[/itex]'s then the eigenvalues of the block-matrix are...
Thanks
[tex]
\left ( \begin{array}{cc}
X_1 & X_2 \\
X_2 & X_1
\end{array} \right )
[/tex]
where the [itex]X_i[/itex]'s are themselves [itex]M \times M[/itex] matrices of the form
[tex]
X_i = x_i \left ( \begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array} \right )
[/tex]
Is there any theroem that could help? Something like if you find the eigenvalues of the [itex]X_i[/itex]'s then the eigenvalues of the block-matrix are...
Thanks