- #1
coki2000
- 91
- 0
I think about on this and found a result, [tex]e^{i\pi k}=e^{-i\pi k}=-1\Rightarrow i\pi k=ln(-1)[/tex]
a>1 and k=1,2,3...
[tex]y=(-a)^{i\alpha }\Rightarrow lny=i\alpha ln(-a)=i\alpha (ln(-1)+lna)=i\alpha (i\pi k+lna)\Rightarrow y=e^{-\alpha \pi k}e^{i\alpha \ln{a}}[/tex]
Then
[tex]\alpha \ln{a}=-\pi \Rightarrow \alpha =\frac{-\pi }{\ln{a}}\Rightarrow e^{-i\pi }e^{\frac{{\pi }^2 k}{\ln{a}}}=-e^{\frac{{\pi }^2 k}{\ln{a}}} [/tex]
If I choose k as infinity, I get a exponential expression as negative infinity.
Is it right? Please explain to me. Thanks
a>1 and k=1,2,3...
[tex]y=(-a)^{i\alpha }\Rightarrow lny=i\alpha ln(-a)=i\alpha (ln(-1)+lna)=i\alpha (i\pi k+lna)\Rightarrow y=e^{-\alpha \pi k}e^{i\alpha \ln{a}}[/tex]
Then
[tex]\alpha \ln{a}=-\pi \Rightarrow \alpha =\frac{-\pi }{\ln{a}}\Rightarrow e^{-i\pi }e^{\frac{{\pi }^2 k}{\ln{a}}}=-e^{\frac{{\pi }^2 k}{\ln{a}}} [/tex]
If I choose k as infinity, I get a exponential expression as negative infinity.
Is it right? Please explain to me. Thanks
Last edited: