- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
Let $ABCD$ be a square, and let $E$ be an internal point on side $AD$. Let $F$ be the foot of the perpendicular from $B$ to $CE$. Suppose $G$ is a point such that $BG = FG$, and the line through $G$ parallel to $BC$ passes through the midpoint of $EF$. Prove that $AC<2\cdot FG$.
-----
Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $ABCD$ be a square, and let $E$ be an internal point on side $AD$. Let $F$ be the foot of the perpendicular from $B$ to $CE$. Suppose $G$ is a point such that $BG = FG$, and the line through $G$ parallel to $BC$ passes through the midpoint of $EF$. Prove that $AC<2\cdot FG$.
-----
Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!