- #1
christang_1023
- 27
- 3
- Homework Statement
- Let##\vec{u} = (1, 2)## and ##\vec{v} = (2, 1)## .
- Relevant Equations
- Draw the following sets of vectors:
1. ##{c\cdot \vec{u}+(1-c)\cdot \vec{v}:c\in R, c\geq0}.##
2. ##{a\vec{u}+b\vec{v}:a+b\leq 1}##
1. I consider this problem algebraically, ##c\cdot \vec{u}+(1-c)\cdot \vec{v}=c(1,2)+(1-c)(2,1)=(c,2c)+(2-2c,1-c)=(2-c,1+c)##; since the constraint I know is ##c\geq 0##, I can conclude the expected vectors##(x,y)## must have ##x\leq2, y\geq 1##.
2. Similarly, I get ##a\vec{u}+b\vec{v}=(a+2b,2a+b)##. With the constraint ## a+b\leq 1##, since ##a,b\in R##, the expected vectors ##(x,y)## should have ##x,y\in R##, which means all two-dimensional vectors satisfy the condition.
Am I correct?
2. Similarly, I get ##a\vec{u}+b\vec{v}=(a+2b,2a+b)##. With the constraint ## a+b\leq 1##, since ##a,b\in R##, the expected vectors ##(x,y)## should have ##x,y\in R##, which means all two-dimensional vectors satisfy the condition.
Am I correct?
Last edited by a moderator: