- #1
Klaus_Hoffmann
- 86
- 1
Hi, my question is given the recurrence relation for the convergents, could we construct a continued fraction so..
[tex] \alpha = a_{0}+ \frac{b_{0}}{a_{1}+\frac{b_{1}}{a_{2}}+... [/tex]
all the coefficients a's and b's are equal to a certain integer ?
for example if all the coefficients (numerators and denomiators)
* are one we have just the Fibonacci (Golden ratio) constant [tex] \frac{2}{\sqrt 5 -1} [/tex]
* are two we have exactly [tex] \sqrt 2 +1 [/tex]
i the sense that expanding the 2 numbers above their continued fraction is made only by 1 or 2, but can we construct a general continued fraction with all the numbers equal to 3,4,5,6,...
[tex] \alpha = a_{0}+ \frac{b_{0}}{a_{1}+\frac{b_{1}}{a_{2}}+... [/tex]
all the coefficients a's and b's are equal to a certain integer ?
for example if all the coefficients (numerators and denomiators)
* are one we have just the Fibonacci (Golden ratio) constant [tex] \frac{2}{\sqrt 5 -1} [/tex]
* are two we have exactly [tex] \sqrt 2 +1 [/tex]
i the sense that expanding the 2 numbers above their continued fraction is made only by 1 or 2, but can we construct a general continued fraction with all the numbers equal to 3,4,5,6,...