- #1
mahmudarif
- 4
- 0
X^4-(X^3)y+(X^2)(y^2)-x(y^3)+y^4= (x+y)^4-5xy(x+y)^2+5(xy)^2
x^6-(x^5)y+(X^4)(y^2)-(X^3)(y^3)+(X^2)(y^4)-x(y^5)+y^6=(x+y)^6-7xy(x+y)^4 +14((xy)^2)(x+y)^2 - 7(xy)^3
......
If n is an odd prime then prove,
x^n-1 - X^(n-2).y+...-x.y^(n-2)+y^(n-1) = (x+y)^n-1 - nxy(x+y)^(n-3) +...(-1)^((n-1)/2) . n .(xy) ^ ((n-1)/2)
Thank you very much in advance for your assistance.
x^6-(x^5)y+(X^4)(y^2)-(X^3)(y^3)+(X^2)(y^4)-x(y^5)+y^6=(x+y)^6-7xy(x+y)^4 +14((xy)^2)(x+y)^2 - 7(xy)^3
......
If n is an odd prime then prove,
x^n-1 - X^(n-2).y+...-x.y^(n-2)+y^(n-1) = (x+y)^n-1 - nxy(x+y)^(n-3) +...(-1)^((n-1)/2) . n .(xy) ^ ((n-1)/2)
Thank you very much in advance for your assistance.