MHB Can Cubic Roots and Square Roots Combine to Equal One?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
AI Thread Summary
The discussion revolves around proving that the sum of the cube roots of two expressions, cbrt{2 + sqrt{5}} and cbrt{2 - sqrt{5}}, equals one. Participants suggest raising both sides to the third power and using the identity for the expansion of a binomial cube. The calculations show that both cube roots can be expressed in terms of (1 ± sqrt{5})/2, leading to the conclusion that their sum is indeed 1. The conversation emphasizes solving the problem manually rather than relying on calculators, highlighting the satisfaction of working through the math by hand. The proof is confirmed as correct, reinforcing the validity of the approach.
mathdad
Messages
1,280
Reaction score
0
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?
 
Mathematics news on Phys.org
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$
 
RTCNTC said:
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?

you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it
 
mathmari said:
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$

Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -

kaliprasad said:
you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it

I understand what you mean but where did x come from? The original equation is equated to 1 not x.
 
RTCNTC said:
Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -
I understand what you mean but where did x come from? The original equation is equated to 1 not x.

you are supposed to prove that it is 1. you do not know it. so presume that it is x. then cube and remove redicals and solve for x.
it should come to be 1.
 
Thank you everyone.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top