- #1
MrWarlock616
- 160
- 3
I need to prove that if ##\sin(x+iy)=cos(\alpha)+i\sin(\alpha)## , then ##\cosh(2y)-\cos(2x)=2##
expanding sin(x+iy) and equating real and imaginary parts, we get:
##\cos(\alpha)=\sin(x)\cosh(y)## -- (1)
and ## \sin(\alpha)=\cos(x)\sinh(y) ## -- (2)
if we use ##\cos^2(\alpha)+\sin^2(\alpha)=1 ## and put the values from (1) and (2) , we can get the required expression. My question is that, is there an alternative to do this? Can I prove it by directly using the values of cosh2y and cos2x [from (1) and (2)]? I tried but it seems impossible. Why is it so?
expanding sin(x+iy) and equating real and imaginary parts, we get:
##\cos(\alpha)=\sin(x)\cosh(y)## -- (1)
and ## \sin(\alpha)=\cos(x)\sinh(y) ## -- (2)
if we use ##\cos^2(\alpha)+\sin^2(\alpha)=1 ## and put the values from (1) and (2) , we can get the required expression. My question is that, is there an alternative to do this? Can I prove it by directly using the values of cosh2y and cos2x [from (1) and (2)]? I tried but it seems impossible. Why is it so?