- #36
friend
- 1,452
- 9
Thanks for the hint, zinq. So let me start over with your suggestion.zinq said:this would mean the square roots have angles -π/4 (first term), π/4 (second term), respectively.
I want to find the limit
[tex]\mathop {\lim }\limits_{{t_1} \to 0} \,\,{\left( {\frac{m}{{2\pi \hbar i{t_1}}}} \right)^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}{e^{im{{(x' - x)}^2}/2\hbar {t_1}}}\,\,\,\,\, + \,\,\,\,\,\mathop {\lim }\limits_{{t_2} \to 0} \,\,{\left( {\frac{m}{{2\pi \hbar ( - i){t_2}}}} \right)^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}{e^{ - im{{(x - x')}^2}/2\hbar {t_2}}}[/tex]
because it represents a particle in superposition with its antiparticle. If I can get this limit to equal zero, then it can represent virtual particle/antiparticle cancellations that have no physical effects on their own. To simplify a bit, I will make
[tex]A = {\left( {\frac{m}{{2\pi \hbar i}}} \right)^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}[/tex]
and
[tex]B = m{(x' - x)^2}/2\hbar [/tex]
Then the above limit becomes
[tex]A\left( {\mathop {\lim }\limits_{{t_1} \to 0} \frac{{{e^{iB/{t_1}}}}}{{{t_1}^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}} + i\mathop {\lim }\limits_{{t_2} \to 0} \frac{{{e^{ - iB/{t_2}}}}}{{{t_2}^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}}} \right)[/tex]
And since [itex]i = {e^{\frac{{i\pi }}{2}}}[/itex], this becomes
[tex]A\left( {\mathop {\lim }\limits_{{t_1} \to 0} \frac{{{e^{iB/{t_1}}}}}{{{t_1}^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}} + \mathop {\lim }\limits_{{t_2} \to 0} \frac{{{e^{ - iB/{t_2} + i\pi /2}}}}{{{t_2}^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}}} \right)[/tex]
If we are talking about virtual particles that pop into existence at the same place at the same time and pop out of existence at the same place at the same time, we must have [itex]{t_1} = {t_2} = t[/itex], and the limit becomes
[tex]A\mathop {\lim }\limits_{t \to 0} \left( {\frac{{{e^{iB/t}}}}{{{t^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}}} + \frac{{{e^{ - iB/t + i\pi /2}}}}{{{t^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}}}} \right) = A\mathop {\lim }\limits_{t \to 0} \frac{1}{{{t^{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}}}}\left( {{e^{iB/t}} + {e^{ - iB/t + i\pi /2}}} \right)[/tex]
Now, here's the new part that I just thought up, thanks to zinq. Let
[tex]\frac{{iB}}{t} = \frac{{i\pi }}{4} + \frac{{i\pi }}{2} + i2\pi n[/tex]
with n any integer. Then [itex]t \to 0[/itex] means that [itex]n \to \infty [/itex]. And we also have
[tex]t = \frac{B}{{\frac{\pi }{4} + \frac{\pi }{2} + 2\pi n}}[/tex]
Putting this into the limit gives
[tex]A\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{\frac{\pi }{4} + \frac{\pi }{2} + 2\pi n}}{B}} \right)^{\frac{1}{2}}}\left( {{e^{\frac{{i\pi }}{4} + \frac{{i\pi }}{2} + i2\pi n}} + {e^{ - \frac{{i\pi }}{4} - \frac{{i\pi }}{2} - i2\pi n + \frac{{i\pi }}{2}}}} \right)[/tex]
The first and last terms in the second exponent add to give [itex]\frac{{i\pi }}{4}[/itex] so that we have
[tex]A\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{\frac{\pi }{4} + \frac{\pi }{2} + 2\pi n}}{B}} \right)^{\frac{1}{2}}}\left( {{e^{\frac{{i\pi }}{4} + \frac{{i\pi }}{2} + i2\pi n}} + {e^{\frac{{i\pi }}{4} - \frac{{i\pi }}{2} - i2\pi n}}} \right)[/tex]
The factor [itex]{e^{\frac{{i\pi }}{4}}}[/itex] in both exponents can be pulled out to give
[tex]A\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{\frac{\pi }{4} + \frac{\pi }{2} + 2\pi n}}{B}} \right)^{\frac{1}{2}}}{e^{\frac{{i\pi }}{4}}}\left( {{e^{\frac{{i\pi }}{2} + i2\pi n}} + {e^{ - \frac{{i\pi }}{2} - i2\pi n}}} \right)[/tex]
And since it is true that [itex]{e^{ix}} = {e^{ix \pm i2\pi n}}[/itex], we have
[tex]A\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{\frac{\pi }{4} + \frac{\pi }{2} + 2\pi n}}{B}} \right)^{\frac{1}{2}}}{e^{\frac{{i\pi }}{4}}}\left( {{e^{\frac{{i\pi }}{2}}} + {e^{ - \frac{{i\pi }}{2}}}} \right)[/tex]
And with [itex]{e^{\frac{{i\pi }}{2}}} = i[/itex] and [itex]{e^{ - \frac{{i\pi }}{2}}} = - i[/itex], the limit reduces to
[tex]A\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{\frac{\pi }{4} + \frac{\pi }{2} + 2\pi n}}{B}} \right)^{\frac{1}{2}}}{e^{\frac{{i\pi }}{4}}}\left( {i - i} \right) = 0[/tex]
for any n whatsoever.
I got convergence by specifying a path of [itex]{t_1} = {t_2} = t[/itex] and making t discrete, [itex]t = \frac{B}{{\frac{\pi }{4} + \frac{\pi }{2} + 2\pi n}}[/itex]. So the last equation is not equal to the first equation. But I still have to wonder if they are equal in the limit.