- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Here's this week's problem.
-----
Problem: If $f(z)=\exp(z)=\sum_{n=0}^{\infty}z^n/n!$ and $A$ is a hermitian operator, show that $f(iA)$ is a unitary operator.
-----
-----
Problem: If $f(z)=\exp(z)=\sum_{n=0}^{\infty}z^n/n!$ and $A$ is a hermitian operator, show that $f(iA)$ is a unitary operator.
-----