- #1
lugita15
- 1,554
- 15
We usually talk about ##F[[x]]##, the set of formal power series with coefficients in ##F##, as a topological ring. But we can also view it as a topological vector space over ##F## where ##F## is endowed with the discrete topology. And viewed in this way, ##\{x^n:n\in\mathbb{N}\}## is a Schauder basis for ##F[[x]]##.
Now in contrast, ##\{(x)_n:n\in\mathbb{N}\}##, where ##(x)_n## denotes the falling factorial, is not a Schauder basis for ##F[[x]]##. That’s because if ##\Sigma_na_n(x)_n## never converges in the standard topology on ##F[[x]]## if infinitely many of the ##a_n##’s are nonzero. But my question is, does there exist some alternate topology on ##F[[x]]## which makes ##\{(x)_n:n\in\mathbb{N}\}## a Schauder basis for ##F[[x]]## as a topological vector space over ##F## endowed with the discrete topology?
Now in contrast, ##\{(x)_n:n\in\mathbb{N}\}##, where ##(x)_n## denotes the falling factorial, is not a Schauder basis for ##F[[x]]##. That’s because if ##\Sigma_na_n(x)_n## never converges in the standard topology on ##F[[x]]## if infinitely many of the ##a_n##’s are nonzero. But my question is, does there exist some alternate topology on ##F[[x]]## which makes ##\{(x)_n:n\in\mathbb{N}\}## a Schauder basis for ##F[[x]]## as a topological vector space over ##F## endowed with the discrete topology?