- #1
solakis1
- 422
- 0
Using high school mathematics prove the following inequality:
\(\displaystyle \sqrt{a_{1}^2+...+a_{n}^2}\leq\sqrt{(a_{1}-b_{1})^2+...+(a_{n}-b_{n})^2}+\sqrt{b_{1}^2+...+b_{n}^2}\)
\(\displaystyle \sqrt{a_{1}^2+...+a_{n}^2}\leq\sqrt{(a_{1}-b_{1})^2+...+(a_{n}-b_{n})^2}+\sqrt{b_{1}^2+...+b_{n}^2}\)
Last edited: