Can I find a general solution to this circuit?

AI Thread Summary
The discussion centers on finding the equivalent resistance of a circuit with varying numbers of R3 resistors. It is suggested that there may not be a general solution due to the complexity of the calculations involved. However, one participant proposes analyzing the circuit by removing certain resistors to simplify the problem. They establish a relationship between the resistance functions R(n) and R(n+1), leading to an approximation for large n. Ultimately, this approach allows for easier calculations similar to those used in infinite ladder circuits.
Lotto
Messages
251
Reaction score
16
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: I have to find an equivalent resistance of the circuit below, dependent on the amount of ##R_3## - resistors.

Here is the circuit:
circuit2.jpg

I think there is no general solution. When I want to calculate it, I have to do ##((((R_1+2R_2)^{-1}+{R_3}^{-1})^{-1}+2R_2)^{-1}+{R_3}^{-1})^{-1}...##, so it is kind of crazy. Is there any general solution dependent on the amount of ##R_3## - resistors ##n##? So something like ##R_{\mathrm {eq} _n}=....##.
 
Physics news on Phys.org
Google "ladder circuit". You will find methods for dealing with problems like this.
 
Lotto said:
TL;DR Summary: I have to find an equivalent resistance of the circuit below, dependent on the amount of ##R_3## - resistors.

Here is the circuit:
View attachment 326155
I think there is no general solution. When I want to calculate it, I have to do ##((((R_1+2R_2)^{-1}+{R_3}^{-1})^{-1}+2R_2)^{-1}+{R_3}^{-1})^{-1}...##, so it is kind of crazy. Is there any general solution dependent on the amount of ##R_3## - resistors ##n##? So something like ##R_{\mathrm {eq} _n}=....##.
My first step would be to leave out the two R1s. Those can be put back in later.
The resistance of the remaining system is a function R(n). Can you figure out the relationship between R(n) and R(n+1)?
 
haruspex said:
My first step would be to leave out the two R1s. Those can be put back in later.
The resistance of the remaining system is a function R(n). Can you figure out the relationship between R(n) and R(n+1)?
Yes, I did it and I made an approximation when ##n## is big, so we can say that ##R_n \approx R_{n-1}##, similary as when we solve an infinite ladder circuit. Then it was easy to solve.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top