- #1
Jhenrique
- 685
- 4
If from the derivate, we can generate an equation that is the equation of the tangent straight, so:
[tex]\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} y}{\mathrm{d} x}[/tex]
[tex]\mathrm{d} y=\frac{\mathrm{d} y}{\mathrm{d} x}\mathrm{d} x[/tex]
[tex]y=\frac{\mathrm{d} y}{\mathrm{d} x}\mathrm{d} x+y_{0}[/tex]
[tex]y(x)=y'(x_0)(x-x_0)+y(x_0)[/tex]
And this extends even to other cases...
[tex]y(x)=y''(x_0)\frac{(x-x_0)^2}{2}+y'(x_0)(x-x_0)+y(x_0)[/tex]
[tex]y(x)=y^{**}(x_0)^{\frac{(x-x_0)^2}{2}}\times y^{*}(x_0)^{(x-x_0)}\times y(x_0)[/tex]
Being
[tex]y^{*}(x)=exp\frac{f'(x)}{f(x)}[/tex]
The geometric derivate
... So, similarly, is not possible to generate a characteristic equation with integration?
[tex]\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} y}{\mathrm{d} x}[/tex]
[tex]\mathrm{d} y=\frac{\mathrm{d} y}{\mathrm{d} x}\mathrm{d} x[/tex]
[tex]y=\frac{\mathrm{d} y}{\mathrm{d} x}\mathrm{d} x+y_{0}[/tex]
[tex]y(x)=y'(x_0)(x-x_0)+y(x_0)[/tex]
And this extends even to other cases...
[tex]y(x)=y''(x_0)\frac{(x-x_0)^2}{2}+y'(x_0)(x-x_0)+y(x_0)[/tex]
[tex]y(x)=y^{**}(x_0)^{\frac{(x-x_0)^2}{2}}\times y^{*}(x_0)^{(x-x_0)}\times y(x_0)[/tex]
Being
[tex]y^{*}(x)=exp\frac{f'(x)}{f(x)}[/tex]
The geometric derivate
... So, similarly, is not possible to generate a characteristic equation with integration?