- #1
aamir.ahmed
- 2
- 0
Consider the multipole expansion of Newtonian potential 1/R in 2D in terms of Legendre functions.
[tex]
\begin{align}
\mathbf{r_1} &= (r , \theta_1) \\
\mathbf{r} &= (r , \theta) \\
\phi(\mathbf{r}-\mathbf{r_1}) &= \frac{1}{\left|\mathbf{r}-\mathbf{r_1}\right|} \\
\phi(\mathbf{r}-\mathbf{r_1}) &= \frac{1}{\sqrt{r^2+r_1^2 - 2 r r_1 cos(\theta - \theta_1) }} \\
\phi(\mathbf{r}-\mathbf{r_1}) &= \sum_{k=0}^{\infty} P_k\left(cos(\theta - \theta_1)\right) \frac{r_1^k}{r^{k+1}}
\end{align}
[/tex]
I am working on an N-body simulation problem and would like to know if there is a way to factor the Legendre functions P_k(cos(theta-theta1)) out in separate functions of theta and theta1? Actually this is possible when using spherical harmonics in 3D, but I need it in 2D. Please help!
[tex]
\begin{align}
\mathbf{r_1} &= (r , \theta_1) \\
\mathbf{r} &= (r , \theta) \\
\phi(\mathbf{r}-\mathbf{r_1}) &= \frac{1}{\left|\mathbf{r}-\mathbf{r_1}\right|} \\
\phi(\mathbf{r}-\mathbf{r_1}) &= \frac{1}{\sqrt{r^2+r_1^2 - 2 r r_1 cos(\theta - \theta_1) }} \\
\phi(\mathbf{r}-\mathbf{r_1}) &= \sum_{k=0}^{\infty} P_k\left(cos(\theta - \theta_1)\right) \frac{r_1^k}{r^{k+1}}
\end{align}
[/tex]
I am working on an N-body simulation problem and would like to know if there is a way to factor the Legendre functions P_k(cos(theta-theta1)) out in separate functions of theta and theta1? Actually this is possible when using spherical harmonics in 3D, but I need it in 2D. Please help!