- #1
javi410
- 1
- 0
Hi,
Im trying to prove that a prime $p\neq 3$ is of the form $p=x^2 + 3y^2$ if $p \equiv 1 \pmod{3}$.
I have think in a prove as follows:
As we know that $-3$ is a quadratic residue mod p, we know that the ideal $(p)$ must divide $(x^2 + 3) = (x + \sqrt{-3})(x - \sqrt{-3})$ in the ring $\mathbb{Z}[\sqrt{-3}]$.
$p$ don't divide any of the factors so it can not be prime in $\mathbb{Z}[\sqrt{-3}]$, so there are ideals $I,J$ of $\mathbb{Z}[\sqrt{-3}]$ such that
\[
(p) = I\cdot J
\]
and, if we prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID, we have the result as we can take elements $u,v$ of $I$ and $J$ such that $u\cdot v$ has norm $p^2$, therefore the norm of $u = a^2 + b\sqrt{-3}$ is $p =a^2 + 3b^2$.
The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.
Thanks!
Im trying to prove that a prime $p\neq 3$ is of the form $p=x^2 + 3y^2$ if $p \equiv 1 \pmod{3}$.
I have think in a prove as follows:
As we know that $-3$ is a quadratic residue mod p, we know that the ideal $(p)$ must divide $(x^2 + 3) = (x + \sqrt{-3})(x - \sqrt{-3})$ in the ring $\mathbb{Z}[\sqrt{-3}]$.
$p$ don't divide any of the factors so it can not be prime in $\mathbb{Z}[\sqrt{-3}]$, so there are ideals $I,J$ of $\mathbb{Z}[\sqrt{-3}]$ such that
\[
(p) = I\cdot J
\]
and, if we prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID, we have the result as we can take elements $u,v$ of $I$ and $J$ such that $u\cdot v$ has norm $p^2$, therefore the norm of $u = a^2 + b\sqrt{-3}$ is $p =a^2 + 3b^2$.
The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.
Thanks!