- #1
garrus
- 17
- 0
Homework Statement
Show that [itex]||A||_1 \le \sqrt{n} ||A||_2 , ||A||_2 \le \sqrt{n} ||A||_1[/itex] , where
[tex]||A||_1 = \max_{1\le j\le n}\sum_{i=1}^n |a_{ij}| \\
||A||_2 = (p(A^TA))^\frac{1}{2} \\
p(B) = \max|\lambda_B|
[/tex]
with [itex]A,B\in \mathbb{R}^{n,n}, i,j\in[1...n] , \lambda_A[/itex]the eigenvalues of matrix A
Homework Equations
wiki page on matrix norms
The Attempt at a Solution
I figured i could go the same way in proving that [itex]||x||_1 \le \sqrt{n} ||x||_2 , x\in \mathbb{R}^n[/itex] via the Cauchy Schwartz inequality.But since the max operator is not linear, isn't it a mistake to write
[tex]
||A||_1 = \max_{1\le j\le n} \sum_{i=1}^{n}|a_{ij}| =
\max_{1\le j\le n}\sum_{i=1}^{n}|a_{ij}| * 1 \le
\max_{1\le j\le n} (\sum_{i=1}^{n}|a_{ij}|^2 * \sum_{i=1}^{n}1^2)^{\frac{1}{2}} [/tex] ?
Any hints?
edit:
Slightly off topic question: In triangle inequality, it holds that
|a - b| >= |a| - |b| . can we also bound it from below, by |a-b| = |a +(-b)| <=|a|+|b| ?
Last edited: