- #1
- 7,861
- 1,600
Human being's can't take exact random samples from continuous distributions like the uniform distribution on [0,1].
If we attempt to make measurements of physical pheonomena, we are limited to finite precision. Hence it isn't possible do empirical tests of properties involving exact sample values (such as "Is the value of the sample an irrational number?").
I'm curious if there is any physical evidence that Nature takes exact random samples from a continuous distirbution. Is there some kind of indirect argument that she does? (I"m hoping to hear that there is some example in QM where the failure to sample an exact value would show up in some macroscopic result or at least some result that could be detected without making an exact measurement. )
If we attempt to make measurements of physical pheonomena, we are limited to finite precision. Hence it isn't possible do empirical tests of properties involving exact sample values (such as "Is the value of the sample an irrational number?").
I'm curious if there is any physical evidence that Nature takes exact random samples from a continuous distirbution. Is there some kind of indirect argument that she does? (I"m hoping to hear that there is some example in QM where the failure to sample an exact value would show up in some macroscopic result or at least some result that could be detected without making an exact measurement. )