- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Consider a polynomial
$$P(x)=a_0+a_1x+\cdots+a_{2011}x^{2011}+x^{2012}$$
Nigel and Jessica are playing the following game. In turn, they choose one of the coefficients $a_0,\,\cdots,\,a_{2011}$ and assign a real value to it. Nigel has the first move. Once a value is assigned to a coefficient, it cannot be changed any more. The game ends after all the coefficients have been assigned values.
Jessica's goal is to make $P(x)$ divisible by a fixed polynomial $m(x)$ and Nigel's goal is to prevent this.
Which of the players has a winning strategy if $m(x)=x-2012$?
$$P(x)=a_0+a_1x+\cdots+a_{2011}x^{2011}+x^{2012}$$
Nigel and Jessica are playing the following game. In turn, they choose one of the coefficients $a_0,\,\cdots,\,a_{2011}$ and assign a real value to it. Nigel has the first move. Once a value is assigned to a coefficient, it cannot be changed any more. The game ends after all the coefficients have been assigned values.
Jessica's goal is to make $P(x)$ divisible by a fixed polynomial $m(x)$ and Nigel's goal is to prevent this.
Which of the players has a winning strategy if $m(x)=x-2012$?
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!