- #1
johne1618
- 371
- 0
I start with the expression for kinetic energy
[itex]\Large E = \frac{1}{2}mv^2[/itex]
Differentiate both sides by [itex]x[/itex]
[itex]\Large \frac{dE}{dx} = m v \frac{dv}{dx}[/itex]
Substitute the following expression for the velocity [itex]v[/itex]
[itex]\Large v = \frac{dx}{dt}[/itex]
To get
[itex]\Large \frac{dE}{dx} = m \frac{dv}{dx} \frac{dx}{dt}[/itex]
Using the differentiation chain rule:
[itex]\Large \frac{dE}{dx} = m \frac{dv}{dt}[/itex]
If I apply a force F to the mass m then the differential work done by the force is
[itex]\Large dE = F dx[/itex]
Substituting this expression we find:
[itex]\Large F = m a[/itex]
[itex]\Large E = \frac{1}{2}mv^2[/itex]
Differentiate both sides by [itex]x[/itex]
[itex]\Large \frac{dE}{dx} = m v \frac{dv}{dx}[/itex]
Substitute the following expression for the velocity [itex]v[/itex]
[itex]\Large v = \frac{dx}{dt}[/itex]
To get
[itex]\Large \frac{dE}{dx} = m \frac{dv}{dx} \frac{dx}{dt}[/itex]
Using the differentiation chain rule:
[itex]\Large \frac{dE}{dx} = m \frac{dv}{dt}[/itex]
If I apply a force F to the mass m then the differential work done by the force is
[itex]\Large dE = F dx[/itex]
Substituting this expression we find:
[itex]\Large F = m a[/itex]
Last edited: