- #1
- 2,076
- 140
I had a quick question about an expansion. Wolfram and maple have not been very useful in verifying the series.
Could I do these:
Centered about a=1:
##f(x) = e^{-3x^2} = e^{-3}e^{-3(x^2-1)} = \sum_{n=0}^{∞} \frac{e^{-3}(-3)^n}{n!} (x^2-1)^n##
Centered about a=2:
##f(x) = e^{-3x^2} = e^{-12}e^{-6(\frac{x^2}{2}-2)} = \sum_{n=0}^{∞} \frac{e^{-12}(-6)^n}{n!} (\frac{x^2}{2}-2)^n##
Centered about a=3:
##f(x) = e^{-3x^2} = e^{-27}e^{-9(\frac{x^2}{3}-3)} = \sum_{n=0}^{∞} \frac{e^{-27}(-9)^n}{n!} (\frac{x^2}{3}-3)^n##
My overall hunch from this pattern centered about a=k:
##f(x) = e^{-3x^2} = e^{-3k^2}e^{-3k(\frac{x^2}{k}-k)} = \sum_{n=0}^{∞} \frac{e^{-3k^2}(-3k)^n}{n!} (\frac{x^2}{k}-k)^n##
and for any ##\alpha## centered about a=k:
##f(x) = e^{-\alpha x^2} = e^{-\alpha k^2}e^{-\alpha k(\frac{x^2}{k}-k)} = \sum_{n=0}^{∞} \frac{e^{-\alpha k^2}(-\alpha k)^n}{n!} (\frac{x^2}{k}-k)^n##
EDIT: Also one more, if I replace ##x^2## by ##x^n## in the above:
##f(x) = e^{-\alpha x^n} = e^{-\alpha k^n}e^{-\alpha k(\frac{x^n}{k}-k)} = \sum_{n=0}^{∞} \frac{e^{-\alpha k^n}(-\alpha k)^n}{n!} (\frac{x^n}{k}-k)^n##
Could I do these:
Centered about a=1:
##f(x) = e^{-3x^2} = e^{-3}e^{-3(x^2-1)} = \sum_{n=0}^{∞} \frac{e^{-3}(-3)^n}{n!} (x^2-1)^n##
Centered about a=2:
##f(x) = e^{-3x^2} = e^{-12}e^{-6(\frac{x^2}{2}-2)} = \sum_{n=0}^{∞} \frac{e^{-12}(-6)^n}{n!} (\frac{x^2}{2}-2)^n##
Centered about a=3:
##f(x) = e^{-3x^2} = e^{-27}e^{-9(\frac{x^2}{3}-3)} = \sum_{n=0}^{∞} \frac{e^{-27}(-9)^n}{n!} (\frac{x^2}{3}-3)^n##
My overall hunch from this pattern centered about a=k:
##f(x) = e^{-3x^2} = e^{-3k^2}e^{-3k(\frac{x^2}{k}-k)} = \sum_{n=0}^{∞} \frac{e^{-3k^2}(-3k)^n}{n!} (\frac{x^2}{k}-k)^n##
and for any ##\alpha## centered about a=k:
##f(x) = e^{-\alpha x^2} = e^{-\alpha k^2}e^{-\alpha k(\frac{x^2}{k}-k)} = \sum_{n=0}^{∞} \frac{e^{-\alpha k^2}(-\alpha k)^n}{n!} (\frac{x^2}{k}-k)^n##
EDIT: Also one more, if I replace ##x^2## by ##x^n## in the above:
##f(x) = e^{-\alpha x^n} = e^{-\alpha k^n}e^{-\alpha k(\frac{x^n}{k}-k)} = \sum_{n=0}^{∞} \frac{e^{-\alpha k^n}(-\alpha k)^n}{n!} (\frac{x^n}{k}-k)^n##