- #1
EngWiPy
- 1,368
- 61
Hello,
I have this probability:
[tex]\text{Pr}\left\{\underset{i,j}{\max\,}\underset{n}{\min\,}X_i(n)+X_j(n)<a\right\}[/tex]
where X_i(n) and X_j(n) are i.i.d. for all i,j, and n. Can I find the distribution of
[tex]X_i(n_{\text{min}})[/tex]
where:
[tex]\underset{n}{\min\,}X_i(n)+X_j(n)=X_i(n_{\text{min}})+X_j(n_{\text{min}})[/tex]
??
Thanks in advance
I have this probability:
[tex]\text{Pr}\left\{\underset{i,j}{\max\,}\underset{n}{\min\,}X_i(n)+X_j(n)<a\right\}[/tex]
where X_i(n) and X_j(n) are i.i.d. for all i,j, and n. Can I find the distribution of
[tex]X_i(n_{\text{min}})[/tex]
where:
[tex]\underset{n}{\min\,}X_i(n)+X_j(n)=X_i(n_{\text{min}})+X_j(n_{\text{min}})[/tex]
??
Thanks in advance