- #1
mnb96
- 715
- 5
Hello,
I have an infinite monoid [itex]A[/itex] and a submonoid [itex]K[/itex].
let's assume I pick up an element [itex]x\in A-K[/itex],
now I consider the principal ideal of [itex]K[/itex] generated by [itex]x[/itex], that is [itex]xK=\{xk|k\in K\}[/itex].
The question is:
if I consider another element [itex]x'[/itex] such that [itex]x'\in A-K[/itex] and [itex]x'\notin xK[/itex], is it possible to prove that [itex]xK\cap x'K=0[/itex] ?
If that statement is not generally true, is there an additional hypothesis that I could make to force [itex]xK\cap x'K=0[/itex] hold?PS: I clicked too early and now I cannot change the title into something better.
I have an infinite monoid [itex]A[/itex] and a submonoid [itex]K[/itex].
let's assume I pick up an element [itex]x\in A-K[/itex],
now I consider the principal ideal of [itex]K[/itex] generated by [itex]x[/itex], that is [itex]xK=\{xk|k\in K\}[/itex].
The question is:
if I consider another element [itex]x'[/itex] such that [itex]x'\in A-K[/itex] and [itex]x'\notin xK[/itex], is it possible to prove that [itex]xK\cap x'K=0[/itex] ?
If that statement is not generally true, is there an additional hypothesis that I could make to force [itex]xK\cap x'K=0[/itex] hold?PS: I clicked too early and now I cannot change the title into something better.