- #1
Gear300
- 1,213
- 9
Alright, so this might be a stupid question, but nevertheless, I ask. I am to consider whether the quadratic form
## P(x,y) = a x + b y + d xy ##
can map the integers onto the integers. So through a change of basis, I re-express this as
## P'(u,v) = Au^2 + Bv^2 ##
for rational A and B. ##u,v## can be made to cover integer x,y for rational values, so the problem reduces to whether or not P'(u,v) can map the rationals onto the integers. I say no.
## P(x,y) = a x + b y + d xy ##
can map the integers onto the integers. So through a change of basis, I re-express this as
## P'(u,v) = Au^2 + Bv^2 ##
for rational A and B. ##u,v## can be made to cover integer x,y for rational values, so the problem reduces to whether or not P'(u,v) can map the rationals onto the integers. I say no.
Last edited: