I Can Quantum Effects Prevent Reaching Absolute Zero?

nomadreid
Gold Member
Messages
1,750
Reaction score
243
TL;DR Summary
Do quantum effects as well as thermodynamic laws forbid zero Kelvin? Is there a non-zero greatest lower bound?
In https://phys.org/news/2016-09-cold-black-holes.html it is stated that a supermassive black hole interior could be 10^-14 degrees Kelvin. Is there a limit, perhaps due to quantum effects, below which a temperature (in a black hole or elsewhere) can go? Or do the possibilities approach 0 asymptotically, with only 0 being the theoretical minimum?

Putting it slightly differently: Usually the laws of thermodynamics are invoked to forbid absolute zero; in https://en.wikipedia.org/wiki/Absolute_zero, it is stated that one cannot reach absolute zero by thermodynamic means. Are there other means besides thermodynamic that could subtract energy, or are there quantum effects that would forbid it as well?
 
Physics news on Phys.org
nomadreid said:
In https://phys.org/news/2016-09-cold-black-holes.html it is stated that a supermassive black hole interior could be 10^-14 degrees Kelvin.
This would be true (assuming our current beliefs about Hawking radiation are correct) if the hole was alone in the universe, but it's not. In our actual universe, the hole would be, even if no other matter fell in, continually absorbing CMBR radiation at 2.7 K, so (a) its mass would be increasing, not decreasing, and (b) the Hawking temperature is not a good description of its actual conditions.

As usual, phys.org does not bother to mention all of the relevant items.

nomadreid said:
Is there a limit, perhaps due to quantum effects, below which a temperature (in a black hole or elsewhere) can go? Or do the possibilities approach 0 asymptotically, with only 0 being the theoretical minimum?
As far as I know, theoretically, there is no minimum and absolute zero can in principle be approached asymptotically. The practical issue is that the colder something is, the harder it gets to remove any more heat from it, with the difficulty increasing without bound as absolute zero is approached. I don't know of any quantum effects that change that.
 
  • Like
Likes nomadreid and vanhees71
Thanks for the very helpful reply, PeterDonis.
 
nomadreid said:
Thanks for the very helpful reply, PeterDonis.
You're welcome!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top