- #1
Ugnius
- 54
- 10
- Homework Statement
- ##\left|m\right\rangle = \frac{1}{\sqrt{A}}\binom{1-2i}{\alpha} , \left|n\right\rangle = \frac{1}{\sqrt{14}}\binom{-3+2i}{\beta}##
- Relevant Equations
- Find unknown constants A, α and β, we know that β is real positive integer , α has both real and imaginary parts
Not really even sure how to approach this problem , I would guess if we need scalar answer we would need to combine these two given equations together but I'm unfamiliar with such methods, in the book there is methods to make a ket to a bra and then matrix part transposes and multiplies with the original while constant squares like:
##\left\langle m \right|\left|m\right\rangle = ({\frac{1}{\sqrt{A}}}^2)*\binom{1-2i}{\alpha}*(1-2i ,\alpha)##
Would that be an approach?
##\left\langle m \right|\left|m\right\rangle = ({\frac{1}{\sqrt{A}}}^2)*\binom{1-2i}{\alpha}*(1-2i ,\alpha)##
Would that be an approach?