- #1
jackmell
- 1,807
- 54
Hi,
The Quaternion group, ##Q=\{1,-1,i,-i,j,-j,k,-k\}##, can be realized by ##2x2## matricies:
##
\begin{align*}
1=\begin{bmatrix} 1,0 \\ 0,1\end{bmatrix} &\hspace{10pt} i=\begin{bmatrix} \omega,0 \\ 0,-\omega\end{bmatrix} & \hspace{10pt}j=\begin{bmatrix} 0,1 \\ -1,0\end{bmatrix} & \hspace{10pt}k=\begin{bmatrix} 0,\omega \\ \omega,0\end{bmatrix}
\end{align*}
##
with ##\omega^2=-1##.
I was told ##Q## can also be represented (non-trivially)by ##3x3## or ##4x4## matricies but could not find any source explaining this and was hoping someone here could either provide a reference or explain this a bit.
Thanks,
Jack
The Quaternion group, ##Q=\{1,-1,i,-i,j,-j,k,-k\}##, can be realized by ##2x2## matricies:
##
\begin{align*}
1=\begin{bmatrix} 1,0 \\ 0,1\end{bmatrix} &\hspace{10pt} i=\begin{bmatrix} \omega,0 \\ 0,-\omega\end{bmatrix} & \hspace{10pt}j=\begin{bmatrix} 0,1 \\ -1,0\end{bmatrix} & \hspace{10pt}k=\begin{bmatrix} 0,\omega \\ \omega,0\end{bmatrix}
\end{align*}
##
with ##\omega^2=-1##.
I was told ##Q## can also be represented (non-trivially)by ##3x3## or ##4x4## matricies but could not find any source explaining this and was hoping someone here could either provide a reference or explain this a bit.
Thanks,
Jack