MHB Can $S_5$ be written as a multiple of $S_3$ and $S_2$?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion centers on proving the equation $\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$ given that $S_n=x^n+y^n+z^n$ and $S_1=0$, which implies $x+y+z=0$. The proof involves manipulating the expressions for $S_5$, $S_3$, and $S_2$ using algebraic identities and relationships derived from the condition $S_1=0$. The calculations show that $S_5$ can be expressed in terms of $S_3$ and $S_2$, ultimately confirming the desired equation. The proof concludes successfully with the established relationship.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$S_n=x^n+y^n+z^n$$. If $$S_1=0$$, prove that $$\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$$.
 
Mathematics news on Phys.org
Re: Prove S_5/5= S_3/3. S_2/2

My solution:

If we view $S_n$ as a recursive algorithm, we see that it must come from the characteristic equation:

$$(r-x)(r-y)(r-z)=0$$

$$r^3-(x+y+z)r^2+(xy+xz+yz)r-xyz=0$$

Since $x+y+z=S_1=0$, we obtain the following recursion:

$$S_{n+3}=-(xy+xz+yz)S_{n+1}+xyzS_{n}$$

Now, observing we may write:

$$(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$$

$$0=S_2+2(xy+xz+yz)$$

$$-(xy+xz+yz)=\frac{S_2}{2}$$

Also, we find:

$$(x+y+z)^3=-2\left(x^3+y^3+z^3 \right)+3\left(x^2+y^2+z^2 \right)(x+y+z)+6xyz$$

$$0=-2S_3+6xyz$$

$$xyz=\frac{S^3}{3}$$

And so our recursion may be written:

$$S_{n+3}=\frac{S_2}{2}S_{n+1}+\frac{S_3}{3}S_{n}$$

Letting $n=2$, we then find:

$$S_{5}=\frac{S_2}{2}S_{3}+\frac{S_3}{3}S_{2}$$

$$S_{5}=\frac{5}{6}S_2S_{3}$$

$$\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$$

Shown as desired.
 
Re: Prove S_5/5= S_3/3. S_2/2

MarkFL said:
My solution:

If we view $S_n$ as a recursive algorithm, we see that it must come from the characteristic equation:

$$(r-x)(r-y)(r-z)=0$$

$$r^3-(x+y+z)r^2+(xy+xz+yz)r-xyz=0$$

Since $x+y+z=S_1=0$, we obtain the following recursion:

$$S_{n+3}=-(xy+xz+yz)S_{n+1}+xyzS_{n}$$

Now, observing we may write:

$$(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$$

$$0=S_2+2(xy+xz+yz)$$

$$-(xy+xz+yz)=\frac{S_2}{2}$$

Also, we find:

$$(x+y+z)^3=-2\left(x^3+y^3+z^3 \right)+3\left(x^2+y^2+z^2 \right)(x+y+z)+6xyz$$

$$0=-2S_3+6xyz$$

$$xyz=\frac{S^3}{3}$$

And so our recursion may be written:

$$S_{n+3}=\frac{S_2}{2}S_{n+1}+\frac{S_3}{3}S_{n}$$

Letting $n=2$, we then find:

$$S_{5}=\frac{S_2}{2}S_{3}+\frac{S_3}{3}S_{2}$$

$$S_{5}=\frac{5}{6}S_2S_{3}$$

$$\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$$

Shown as desired.

Thanks for participating, MarkFL! And your method is neat and elegant!

We are given $S_n=x^n+y^n+z^n$ and $S_1=0$ which implies $x+y+z=0$.

From this given information we then have

[TABLE="class: grid, width: 500"]
[TR]
[TD]1.[/TD]
[TD]2.[/TD]
[/TR]
[TR]
[TD]$\small(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)$

$0=x^2+y^2+z^2+2(xy+yz+xz)$

$x^2+y^2+z^2=-2(xy+yz+xz)$

$x^2+y^2+z^2=-2(xy+z(x+y))$

$x^2+y^2+z^2=-2xy-2z(-z)$

$x^2+y^2-z^2=-2xy$

$xy=-\left(\dfrac{x^2+y^2-z^2}{2} \right)$[/TD]
[TD]$\small(x+y+z)^3=x^3+y^3+z^3+3(xy(x+y)+yz(y+z)+xz(x+z))+6xyz$

$0=x^3+y^3+z^3+3(xy(-z)+yz(-x)+xz(-y))+6xyz$

$0=x^3+y^3+z^3+3(xy(-z)+yz(-x)+xz(-y))+6xyz$

$x^3+y^3+z^3=3xyz$[/TD]
[/TR]
[/TABLE]

We're asked to prove $\dfrac{S_5}{5}=\dfrac{S_3}{3}\cdot\dfrac{S_2}{2}$.

We see that

$S_5=x^5+y^5+z^5$

$\;\;\;\;\;=x^5+y^5+(-x-y)^5$

$\;\;\;\;\;=x^5+y^5-(x+y)^5$

$\;\;\;\;\;=x^5+y^5-(x^5+5x^4y+10x^3y^3+10x^2y^3+5xy^4+y^5)$

$\;\;\;\;\;=-(5x^4y+10x^3y^3+10x^2y^3+5xy^4)$

$\;\;\;\;\;=-(5xy(x^3+y^3)+10x^2y^2(x+y))$

$\;\;\;\;\;=-5xy((x^3+y^3)+2xy(x+y))$

$\;\;\;\;\;=-5xy((x+y)(x^2-xy+y^2)+2xy(x+y))$

$\;\;\;\;\;=-5xy((x+y)(x^2-xy+y^2+2xy))$

$\;\;\;\;\;=-5xy((x+y)(x^2+xy+y^2))$

$\;\;\;\;\;=-5\left(\dfrac{(x^3+y^3+z^3}{3z} \right)(-z)(x^2-\left(\dfrac{x^2+y^2-z^2}{2} \right)+y^2))$

$\;\;\;\;\;=5\left(\dfrac{x^3+y^3+z^3}{3} \right)\left(\dfrac{x^2+y^2+z^2}{2} \right)$

and therefore we obtain

$\dfrac{S_5}{5}=\dfrac{S_3}{3}\cdot\dfrac{S_2}{2}$ and we're done.(Emo)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
Replies
4
Views
2K
Replies
12
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K