- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey! (Wave)
Knowing that $A,B$ are sets, and:
$$\text{ If } a \in A, \text{ then } \{ a \} \subset A \rightarrow \{ a \} \in \mathcal P A \rightarrow \{ a \} \in \mathcal P (A \cup B)$$
from this: $\{ a \} \in \mathcal P (A \cup B)$, can we conclude that:
$$\{ a \} \subset \mathcal P (A \cup B)$$
? (Thinking)
Also, when we have $\{ a \} \in \mathcal P( A \cup B)$ and $\{ a, b \} \in \mathcal P (A \cup B)$, how do we conclude that $\{ \{ a \}, \{ a, b \} \} \in \mathcal P \mathcal P (A \cup B)$ ?
Knowing that $A,B$ are sets, and:
$$\text{ If } a \in A, \text{ then } \{ a \} \subset A \rightarrow \{ a \} \in \mathcal P A \rightarrow \{ a \} \in \mathcal P (A \cup B)$$
from this: $\{ a \} \in \mathcal P (A \cup B)$, can we conclude that:
$$\{ a \} \subset \mathcal P (A \cup B)$$
? (Thinking)
Also, when we have $\{ a \} \in \mathcal P( A \cup B)$ and $\{ a, b \} \in \mathcal P (A \cup B)$, how do we conclude that $\{ \{ a \}, \{ a, b \} \} \in \mathcal P \mathcal P (A \cup B)$ ?
Last edited: