- #1
karush
Gold Member
MHB
- 3,269
- 5
$$\tiny\text{Whitman 8.7.15 Chain Rule} $$
$$\displaystyle
I=\int \frac{\sec^2\left({t}\right)}{\left(1+\tan\left({t}\right)\right)^2}\ d{t}
=\frac{-1}{2\left(1+\tan\left({t}\right)\right)}
+ C$$
$\begin{align}\displaystyle
u& = \tan\left({t}\right)&
du&= \sec^2 \left({t}\right)\ d{t} \\
\end{align}$
$\text{so.. chain rule} $
$
\displaystyle
\int {x}^{n} \ dx = \frac{{x}^{x+1}}{n+1}+C
$
$\text{rewrite and integrate} $
$$I=\int \frac{1}{\left(1+u\right)^3} d{u}
=\frac{-1}{2\left(1+\tan\left({t}\right)\right)^2}
+ C
$$
$\tiny\text
{from Surf the Nations math study group}$
$$\displaystyle
I=\int \frac{\sec^2\left({t}\right)}{\left(1+\tan\left({t}\right)\right)^2}\ d{t}
=\frac{-1}{2\left(1+\tan\left({t}\right)\right)}
+ C$$
$\begin{align}\displaystyle
u& = \tan\left({t}\right)&
du&= \sec^2 \left({t}\right)\ d{t} \\
\end{align}$
$\text{so.. chain rule} $
$
\displaystyle
\int {x}^{n} \ dx = \frac{{x}^{x+1}}{n+1}+C
$
$\text{rewrite and integrate} $
$$I=\int \frac{1}{\left(1+u\right)^3} d{u}
=\frac{-1}{2\left(1+\tan\left({t}\right)\right)^2}
+ C
$$
$\tiny\text
{from Surf the Nations math study group}$
Last edited: