- #1
MarkFL
Gold Member
MHB
- 13,288
- 12
Show that:
\(\displaystyle \sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}\)
Hint:
\(\displaystyle \sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}\)
Hint:
Use:
\(\displaystyle (1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)\)
for an appropriate value of $x$.
\(\displaystyle (1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)\)
for an appropriate value of $x$.